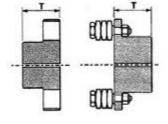
Cone Ring Couplings

Finer Cone Ring Couplings are based on a time proven design. The coupling consists of two flanges interlocked

with a number of elements, depending on the coupling size.

 $\label{thm:cone} The \ Cone \ Ring \ Coupling's \ unique \ flexible \ element \ comprises \ tapered \ rubber \ rings \ mounted \ on \ steel \ pins.$


The rubber rings absorb commonly encountered misalignment, shock and vibration.

The Cone Ring Coupling is as popular as ever for its ease of maintenance.

No Lubrication is required. The Pin and Rubber design ensures trouble free maintenance, as they can be removed and changed without the need to take the coupling off the shafts.

The flanges are high-grade cast iron; the pins are hexagonal steel bar; and the rings are available in synthetic rubber and polyurethane.

TYPICAL TAPERLOCK TAPERLOCK KXT ASSEMBLY KXT BUSH HALF KXT PIN HA

KX BUSH HALF KX PIN HALF

		120	1001 1100				2.10 0000		2 10 East		INA DOG		11011	THE PERSON LA	
Size	No. of Pins (Rubbers)	Pin/ Rubber Size (D.Brown)	Max.Bore PB/ Bush Size		. D	Н		L	М	R		Т		Kg	
			Pin Half	Bush Half		Pin Half	Bush Half	L	L IVI	Pin Half	Bush Half	Pin Half	Bush Half	Pin Half	Bush Half
KX020	6 (18)	1 ((GC3/4"-3)	28	20	88	35	44	OA	6	12	23	53	33	OA	OA
KX030	4 (12)	2 (GC 1"-3)	38	32	127	64	58	85	3	12	26	4	1	1.8	2.5
KX038	6 (18)	2 (GC 1"-3)	42	38	132	72	64	99	3	12	26	48		2.1	2.3
KX042	8 (24)	2 (GC 1"-3)	48	42	146	83	78	115	3	12	26		6	3.0	3.2
KXT042 KX048			1610 55	1215 48				69.5				28.4	38.1	1.8 4.9	5.0
KXT048	6 (18)	3 (GC 1 3/4"-3)	2012	1615	171	90	82	82	3	17	33 -	35	38.1	3.6	4.6
KX058	8 (24)	3 (GC 1 3/4"-3)	65	58	193	106	98	139	3	17	33	68		5.1	5.9
KXT058	0 (24)		2517	2012				82.3	٦			47.5	31.8	3.8	5.6
KX070	10 (30)	3 (GC 1 3/4"-3)	75	70	216	128	117	155	3	17	33	76		9.2	9.0
KXT070	10 (30)		3020	2525				121.5	3			55	63.5	6.1	7.6
KX075	8 (32)	(GC 2 3/4"-3)	80	75	254	127	127	179	3	30	56	88		16.5	16.9
KX085	10 (40)	4	105	85	279	166	148	203	3	30		100		22.4	21.5
KXT085	10 (40)	(GC 2 3/4"-3)	3535	3030	2/9	166	148	172.2	3	30	56	93	76.2	17.1	19.6
KX105	42 (42)	(GC 2 3/4"-3)	120	85	330	202	180	237	3 30	20	30 56	117		36.3	35.0
KXT105	12 (48)		4040	3535				197.5	3	30		105.6	88.9	24.5	27.5
KX120	10 (40)	5	130	120	370	232	206	270	6	5 46	76	13	32	56.1	51.0
KXT120	10 (40)	(GC 4 1/4"-3)	4040	4040				217.2	0			105.6	105.6	39.5	40.5
KX135	12 (48)	5 (GC 4 1/4"-3)	135	135	419	240	230	300	6	46	76	14	¥7	70.0	71.0
KXT135			4545	4545				239.6	0			119.3	114.3	52.8	56.8
KX150	14 (56)	5 (GC 4 1/4"-3)	150	150	457	160	256	336	6	46	76	16	55	88.6	93.0
KXT150			5050	5050				265	U	40	/0	132	127	66.8	72.8
KX170	10 (40)	6 (GC 6-1/4"-3)	190	170	533	320	292	OA	6	63	92	18	38	305	OA

NB -Pin coupling halves are supplied complete with pins, nuts and rubbers

REPLACEMENT PARTS ALSO STOCK SEPARATELY: NBR Rubber Rings, Polyurethane Rings, Pin & Nuts, Pin & Nut Assemblies with NBR Rubbers

Cone Ring Couplings

c .	Power Ratings (Kw @)										
Size	100 rpm		960 rpm	1440 rpm	2880 rpm	Max .rpm	Nominal Torque (Nm)				
020	0.55	3.96	5.28	7.92	15.84	6500	53				
030	1.16	8.4	11.1	16.7	33.4	4600	110				
038	1.87	13.5	18.0	26.9	53.9	4400	175				
042	2.84	20.4	27.3	40.9	81.8	4000	265				
048	4.93	35.5	47.3	71.0	142.0	3400	465				
058	7.54	54.3	72.4	108.6	217.2	3020	720				
070	10.70	77.0	102.7	154.1	-	2700	1020				
075	25.7	185.0	246.7	370.1	-	2300	2450				
085	35.5	255.6	340.8	511.2	-	2090	3390				
105	53	382	509	763	-	1760	5080				
120	90	648	864	1296	-	1570	8474				
135	122	878	1171	-	-	1390	11520				
150	159	1145	1526	-	-	1280	15140				
170	246	1771	2362	-	-	1090	23500				

Selection Procedure

- 1. From the service factors table (below) determine the service factor.
- 2. Calculate the Design Power by multiplying the Absorbed Power of the driven machine by the Service Factor.
- 3. Determine the size of coupling required by matching the design power to a power rating that matches or exceeds the Design Power.

The Pin Half is normally mounted on the drive shaft.

Duty	Electric Motors
Uniform	1.0
Light	1.5
Moderate	2.0
Heavy	2.5
Severe	3.0